The maximum shortening velocity of muscle should be scaled with activation.

نویسندگان

  • J W Chow
  • W G Darling
چکیده

The purpose of this study was to determine whether the maximum shortening velocity (Vmax) in Hill's mechanical model (A. V. Hill. Proc. R. Soc. London Ser. B. 126: 136-195, 1938) should be scaled with activation, measured as a fraction of the maximum isometric force (Fmax). By using the quick-release method, force-velocity (F-V) relationships of the wrist flexors were gathered at five different activation levels (20-100% of maximum at intervals of 20%) from four subjects. The F-V data at different activation levels can be fitted remarkably well with Hill's characteristic equation. In general, the shortening velocity decreases with activation. With the assumption of nonlinear relationships between Hill constants and activation level, a scaled Vmax model was developed. When the F-V curves for submaximal activation were forced to converge at the Vmax obtained with maximum activation (constant Vmax model), there were drastic changes in the shape of the curves. The differences in Vmax values generated by the scaled and constant Vmax models were statistically significant. These results suggest that, when a Hill-type model is used in musculoskeletal modeling, the Vmax should be scaled with activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.

The force-velocity relationship has frequently been used to predict the shortening velocity that muscles should use to generate maximal net power output. Such predictions ignore other well-characterized intrinsic properties of the muscle, such as the length-force relationship and the kinetics of activation and deactivation (relaxation). We examined the effects of relative shortening velocity on...

متن کامل

Power fatigue of the rat diaphragm muscle.

We hypothesized that decrements in maximum power output (W(max)) of the rat diaphragm (Dia) muscle with repetitive activation are due to a disproportionate reduction in force (force fatigue) compared with a slowing of shortening velocity (velocity fatigue). Segments of midcostal Dia muscle were mounted in vitro (26 degrees C) and stimulated directly at 75 Hz in 400-ms-duration trains repeated e...

متن کامل

Scaling of muscle performance during escape responses in the fish myoxocephalus scorpius L

Fast-starts associated with escape responses were studied in short-horn sculpin (Myoxocephalus scorpius L.), ranging from 5.5 to 32 cm in total length (L). Electromyography and sonomicrometry were used simultaneously to measure muscle activation and length changes, respectively, in the superficial layers of fast muscle in rostral myotomes. Escape responses consisted of a half tailbeat to bend t...

متن کامل

Power developed by motor units of the peroneus tertius muscle of the cat.

The mechanical properties of motor units have been extensively studied under isometric conditions. Under dynamic conditions, the relationship between the force developed by single motor units and the muscle shortening velocity was determined for relatively high frequencies of activation. However, the interaction between the force-shortening velocity relation and the force-rate of activation rel...

متن کامل

Effects of phosphorylation of troponin I and C protein on isometric tension and velocity of unloaded shortening in skinned single cardiac myocytes from rats.

Effects on isometric tension generation and maximum velocity of unloaded shortening after exposure to cAMP-dependent protein kinase (PKA) were investigated in rat enzymatically isolated, tritonized ventricular myocytes. Exposure of myocytes to PKA in the presence of [32P]ATP resulted in phosphorylation of troponin I and C protein. Ca2+ sensitivity of isometric tension was assessed as pCa50, ie,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 86 3  شماره 

صفحات  -

تاریخ انتشار 1999